Bridging the Gap: Answering Questions Through Research

Catherine Hovell, PhD October 1, 2012

...one direction a UVa degree can take you ...

Can we	?
What about	?
What happens if	?

Can we optimize the end-region of Texas U-Beams?

- ease construction
- maintain structural performance

Literature Review:

- What previous testing has been done?
- What is the current performance of the structure?

Introduction to the Texas U-Beam

 Designed in the 1990s as an "aesthetically pleasing" alternative for use in highly visible interchanges

Introduction to the Texas U-Beam

Can we optimize the end-region of Texas U-Beams?

- ease construction
- maintain structural performance

Literature Review:

• What previous testing has been done?

Literature Review:

- What previous testing has been done?
 - ...on U-Beams
 - ...under shear load

Literature Review:

- What previous testing has been done?
 - ...on U-Beams
 - ...under shear load

[data from UTPCSDB Filtered Database, N = 1138]

Literature Review:

- What previous testing has been done?
 - ...on U-Beams not much
 - ...under shear load no tests of U-Beams
- What is the current performance of the structure?

Expectations: Shear Strength

University of Texas Prestressed Concrete Shear Database (2011 Edition) [UTPCSDB-2011]

- » 99 references from 1954-2010
- » shear studies from US, Europe, Japan

Used to create an Evaluation Database answering the question – how accurate is the code equation for shear capacity?

Expectations: Shear Strength

 V_n calculated using AASHTO LRFD General Procedure (2010)

Expectations: Shear Strength

 V_n calculated using AASHTO LRFD General Procedure (2010)

tie reinforcement

place concrete: fill bottom slab

place concrete: place void form

place concrete: fill webs

place concrete: clean up

<u>....wait...</u>

<u>strip forms</u>

beam is complete!

Failure could not be reached

Shear Performance: BIN

 V_n calculated using AASHTO LRFD General Procedure (2010)

Distance from Beam End

Intermediate Analysis

These beams are not failing in web-shear

Comparing failure shear with code web-shear capacity is inappropriate

Are we testing the worst-case scenario?

Shear Performance: B3N & B3S

Distance from Beam End

Comparison of Failure Shears

Shear Performance: B3S

Horizontal Shear

Can we optimize the degrad of Texas U-Beams?

- ease construct
- maintain structural rformance

Can we improve the end-region design of Texas U-Beams to increase horizontal shear capacity and allow web-shear to control behavior?

Test Region B4N

#4 R-bars spaced at 3 in. for 5'-0" 4 in. for 5'-0" 6 in. for 3'-4"

Test Region B4N B4N horizontal shear with some web crushing 3 in. for 5'-0" V_n #4 R-bars spaced at 4 in. for 5'-0" Shear Force 6 in. for 3'-4" V_{test} $\frac{V_{test}}{V_n} = [0.86]$ [0.93] [1.12] $V_{test} / V_n = 0.86$ Distance from Beam End

- 4 in. for 5'-0"
- 6 in. for 3'-4"
- 3-#5 L-bars spaced at 3 in. for 5'-0"
 - 4 in. for 2'-8"

Test Region B5N

#5 R-bars spaced at	4 in. for 8'-3"
	6 in. for 5'-1"
#6 L-bars spaced at	4 in. for 8'-3"

Test Region B5N

Test Region B6S

Effect of Design Changes

Comparison to the Literature

 V_n calculated using AASHTO LRFD General Procedure (2010)

Comparison to the Literature

 V_n calculated using AASHTO LRFD General Procedure (2010)

Bridging the Gap

[or, Filling Holes in the Literature]

Shear Test Program

[data from UTPCSDB Filtered Database, N = 1138]

Shear Test Program

[data from UTPCSDB Filtered Database, N = 1138]

[data from UTPCSDB Filtered Database, N = 1138]

Shear Test Program

[data from UTPCSDB Filtered Database, N = 1138]

[data from UTPCSDB Filtered Database, N = 1138]

Conclusions & Advice

- Research is a fluid, cyclic process; the original question asked may become unimportant by the end
- Don't be afraid to think outside the box just because something "should be" doesn't mean it "is"
- Equations learned in class were developed somewhere, verified somehow; it's nice to know where and how
- Getting involved, hands-on, is the best way to understand how something works

Questions or Comments?

Horizontal Shear in Prestressed Beams

Horizontal Shear Demand: $V_{u_{hs}} = v_{hs}b_w(l_{UEP} - oh)$ distance from centerline average horizontal of bearing pad to the shear stress ultimate evaluation point l_{IP} 45° h UEP y_{crit} oh а l_{UEP}

Definition of average horizontal shear stress:

Horizontal Shear Capacity:

$$V_{ni} = k_d \left[cA_{cv} + \mu (A_{vf}f_y) - 0.04P_{PS} \right) \right]$$

(AASHTO shear friction equation)
Calculation Method

Horizontal Shear Capacity: $V_{ni} = k_d [cA_{cv} + \mu (A_{vf}f_y - 0.04P_{PS})]$ prestress transfer penalty

Bars near beam end are stressed at prestress transfer, to resist a force equal to 4% of P_{PS}

Calculation Method

Horizontal Shear Capacity: $V_{ni} = k_d [cA_{cv} + \mu (A_{vf}f_y - 0.04P_{PS})]$ beam shape / reinforcement detailing factor

Horizontal Shear Evaluation Database

- Subset of UTPCSDB Evaluation-Level I Database
- Specimens removed if:
 - » post-tensioned
 - » rectangular or T-shaped
 - » non-standard beam section
 - » skewed beam
 - » insufficient reinforcement information available
- HSED contains 69 data points (including 8 U-Beams)

Horizontal Shear Evaluation Database Texas 4B28 AASHTO AASHTO Type I Texas AASHTO Type II Туре С AASHTO Type II Minnesota Type III with deck Type 54 with deck Texas Tx70 PCI BT-63 Texas Tx46 PCEF-45 Texas Tx28 with deck Minnesota with deck with deck Type 54 with deck with deck Texas 5B40 Texas 5XB40 with deck Texas U54 with deck Texas Modified U54 with deck

Horizontal Shear Evaluation

 V_{test}/V_n

[calculated using AASHTO General Procedure]

THE UNIVERSITY OF TEXAS AT AUSTIN

 $\frac{V_{u_{hs}}}{V_{ni}}$

Horizontal Shear Evaluation

 $V_{test}/_{U}$ [calculated using AASHTO General Procedure]

What is k_d and where did it come from?

HSED with U-Beams 1.6 II ı 1.4 I I 1.2 λης 1.0 $\frac{V_{u_{hs}}}{V_{ni}}$ 0.8 II I <u>i</u>h 0.6 I 0.4 I 0.2 Some Horizontal Shear Damage No Horizontal Shear Damage 0.0 0.2 0.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 V_{test}/V_n [calculated using AASHTO General Procedure] THE UNIVERSITY OF TEXAS AT AUSTIN

Shear Friction

Shear Friction

Horizontal Shear in U-Beams

Horizontal Shear in U-Beams

Horizontal Shear in U-Beams

Horizontal Shear in U-Beams Т

Modified Push-Off Results

Calculated capacity = 74.4 kip

		Centered	Offset
Series I	Measured Value	67.4 kip	54.7 kip
Series 2	Measured Value	73.2 kip	60.1 kip

Modified Push-Off Results

Calculated capacity = 74.4 kip

		Centered	Offset
Carrian I	Measured Value	67.4 kip	54.7 kip
Series	Ratio to Calculated	0.91	0.73
Carrian D	Measured Value	73.2 kip	60.1 kip
Series Z	Ratio to Calculated	0.98	0.81

Modified Push-Off Results

		Centered	Offset	Ratio: Offset
				Centered
Series I	Measured Value	67.4 kip	54.7 kip	0.81
	Ratio to Calculated	0.91	0.73	
Series 2	Measured Value	73.2 kip	60.1 kip	0.82
	Ratio to Calculated	0.98	0.81	

for U-Beams with offset reinforcement (i.e., no supplementary bars), reduce capacity with k_d equal to 0.8

